Bfsoft.ru

Программы, сервисы, полезные советы о компьютере и интернете
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Перевод чисел из одной системы счисления в другую

Перевод чисел из одной системы счисления в другую онлайн

С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку «Перевести». Теоретическую часть и численные примеры смотрите ниже.

Предупреждение

Результат уже получен!

Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

число6372
позиция321

Тогда число 6372 можно представить в следующем виде:

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

число1287.923
позиция321-1-2-3

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

где Цn-целое число в позиции n, Д-k— дробное число в позиции (-k), s — система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр <0,1,2,3,4,5,6,7,8,9>, в восьмеричной системе счисления — из множества цифр <0,1,2,3,4,5,6,7>, в двоичной системе счисления — из множества цифр <0,1>, в шестнадцатеричной системе счисления — из множества цифр <0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F>, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.

В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
102816
1111
21022
31133
410044
510155
611066
711177
81000108
91001119
10101012A
11101113B
12110014C
13110115D
14111016E
15111117F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3. Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B — на 11, C— на 12, F — на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Читайте так же:
Процесс com.android.systemui остановлен что делать

Целую часть числа переводится из десятичной СС в другую систему счисления — последовательным делением целой части числа на основание системы счисления (для двоичной СС — на 2, для 8-ичной СС — на 8, для 16-ичной — на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4. Переведем число 159 из десятичной СС в двоичную СС:

1592
158792
178392
138192
11892
1842
1422
21

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:

Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.

6158
608768
77298
481
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:

Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

1967316
19664122916
912167616
13644
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 — D. Следовательно наше шестнадцатеричное число — это 4CD9.

Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x2
0.428
x2
0.856
x2
10.712
x2
10.424
x2
0.848
x2
10.696
x2
10.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011.

Следовательно можно записать:

Читайте так же:
Что такое тезис?

Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x2
0.25
x2
0.5
x2
10.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x16
30.424
x16
60.784
x16
120.544
x16
80.704
x16
110.264
x16
40.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x8
40.096
x8
0.768
x8
60.144
x8
10.152
x8
10.216
x8
10.728

Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим:

Перевод чисел в различные системы счисления с решением

Калькулятор позволяет переводить целые и дробные числа из одной системы счисления в другую. Основание системы счисления не может быть меньше 2 и больше 36 (10 цифр и 26 латинских букв всё-таки). Длина чисел не должна превышать 30 символов. Для ввода дробных чисел используйте символ . или , . Чтобы перевести число из одной системы в другую, введите исходное число в первое поле, основание исходной системы счисления во второе и основание системы счисления, в которую нужно перевести число, в третье поле, после чего нажмите кнопку «Получить запись».

Исходное число записано в -ой системе счисления.

Хочу получить запись числа в -ой системе счисления.

Системы счисления

Системы счисления делятся на два типа: позиционные и не позиционные. Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.

Пример 1. Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:

Число:5921
Позиция:321

Число 5921 можно записать в следующем виде: 5921 = 5000+900+20+1 = 5·10 3 +9·10 2 +2·10 1 +1·10 0 . Число 10 является характеристикой, определяющей систему счисления. В качестве степеней взяты значения позиции данного числа.

Пример 2. Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:

Число:1234567
Позиция:321-1-2-3

Число 1234.567 можно записать в следующем виде: 1234.567 = 1000+200+30+4+0.5+0.06+0.007 = 1·10 3 +2·10 2 +3·10 1 +4·10 0 +5·10 -1 +6·10 -2 +7·10 -3 .

Перевод чисел из одной системы счисления в другую

Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.

Читайте так же:
Как проверить телефон Самсунг на оригинальность

Перевод чисел из любой системы счисления в десятичную систему счисления

Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:

1. Перевести число 1001101.11012 в десятичную систему счисления.
Решение: 1001101.11012 = 1·2 6 +0·2 5 +0·2 4 +1·2 3 +1·2 2 +0·2 1 +1·2 0 +1·2 -1 +1·2 -2 +0·2 -3 +1·2 -4 = 64+8++4+1+0.5+0.25+0.0625 = 77.812510
Ответ: 1001101.11012 = 77.812510

2. Перевести число E8F.2D16 в десятичную систему счисления.
Решение: E8F.2D16 = 14·16 2 +8·16 1 +15·16 0 +2·16 -1 +13·16 -2 = 3584+128+15+0.125+0.05078125 = 3727.1757812510
Ответ: E8F.2D16 = 3727.1757812510

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.

Перевод целой части числа из десятичной системы счисления в другую систему счисления

Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.

3. Перевести число 27310 в восьмиричную систему счисления.
Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421
Проверка: 4·8 2 +2·8 1 +1·8 0 = 256+16+1 = 273 = 273 , результат совпал. Значит перевод выполнен правильно.
Ответ: 27310 = 4218

Рассмотрим перевод правильных десятичных дробей в различные системы счисления.

Перевод дробной части числа из десятичной системы счисления в другую систему счисления

Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью. Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.

4. Перевести число 0.12510 в двоичную систему счисления.
Решение: 0.125·2 = 0.25 (0 — целая часть, которая станет первой цифрой результата), 0.25·2 = 0.5 (0 — вторая цифра результата), 0.5·2 = 1.0 (1 — третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).
Ответ: 0.12510 = 0.0012

Перевод чисел из одной системы счисления в другую

Выберите систему счисления и введите число, калькулятор автоматически совершит перевод.

Перевод чисел из десятичной системы счисления в двоичную
Двоичная система счисления

Для записи чисел в двоичной системе используются цифры и 1. В таблице представлены целые числа записанные в двоичной системе счисления:

Читайте так же:
Тип метки NFC не поддерживается на Samsung Galaxy
Десятичная12345678910
Двоичная11011100101110111100010011010
Перевод в двоичную систему счисления

Рассмотрим на примере процесс преобразования числа 75 из десятичной системы в двоичную:

  • 1 Последовательно делим число 75 на основание системы = 2
    • 75 ÷ 2 = 37 и 1 в остатке
    • 37 ÷ 2 = 18 и 1 в остатке
    • 18 ÷ 2 = 9 и 0 в остатке
    • 9 ÷ 2 = 4 и 1 в остатке
    • 4 ÷ 2 = 2 и 0 в остатке
    • 2 ÷ 2 = 1 и 0 в остатке
    • 1 ÷ 2 = 0 и 1 в остатке
    Пример Преобразовать число 431 в двоичную систему счисления

    Последовательно делим число 431 на 2 получим:

    • 431 ÷ 2 = 215 и 1 в остатке
    • 215 ÷ 2 = 107 и 1 в остатке
    • 107 ÷ 2 = 53 и 1 в остатке
    • 53 ÷ 2 = 26 и 1 в остатке
    • 26 ÷ 2 = 13 и 0 в остатке
    • 13 ÷ 2 = 6 и 1 в остатке
    • 6 ÷ 2 = 3 и 0 в остатке
    • 3 ÷ 2 = 1 и 1 в остатке
    • 1 ÷ 2 = 0 и 1 в остатке
    Перевод чисел из десятичной системы счисления в восьмеричную
    Восьмеричная система счисления

    Для записи чисел в восьмеричной системе используются цифры от до 7. В таблице представлены целые числа записанные в восьмеричной системе счисления:

    Десятичная2581020501002505001000
    Восьмеричная25101224621443727641750
    Перевод в восьмеричную систему счисления

    Процесс преобразования в восьмеричную систему счисления аналогичен преобразованию в двоичную системы, изменяется только основание системы счисления, число на которое мы делим. Рассмотрим на примере преобразования числа 345 из десятичной системы в двоичную.

    Пример Преобразовать число 345 в восьмеричную систему счисления

    Последовательно делим число 345 на основание системы счисления 8 получим:

    • 345 ÷ 8 = 43 и 1 в остатке
    • 43 ÷ 8 = 5 и 3 в остатке
    • 5 ÷ 8 = 0 и 5 в остатке
    Перевод чисел в десятичную систему счисления
    Перевод из двоичной системы в десятичную

    Преобразуем двоичное число 1001011 из первого примера

      1 Для преобразования из двоичной системы счисления в десятичную нужно каждую цифру числа умножить на 2 k , где k-зависит от позиции цифры. Получится выражение:

    1001011 2= 1 * 2 6 + 0 * 2 5 + 0 * 2 4 + 1 * 2 3 + 0 * 2 2 + 1 * 2 1 + 1 * 2 0 =64+0+0+8+0+2+1=7510

    Пример Перевести число 11010101 из двоичной системы в десятичную.

    11010101 2= 1 * 2 7 + 1 * 2 6 + 0 * 2 5 + 1 * 2 4 + 0 * 2 3 + 1 * 2 2 + 0 * 2 1 + 1 * 2 0 =128+64+0+16+0+4+0+1=21310

    Перевод из восьмеричной системы в десятичную

    Преобразуем восьмеричное число 572 .

    Пример Перевести число 572 из восьмеричной системы в десятичную.

    572 8= 5 * 8 2 + 7 * 8 1 + 2 * 8 0 =320+56+2=37810

    Перевод из шестнадцатеричной системы в десятичную

    Числа в шестнадцатеричной системе состоят из цифр 0-9 и букв A, B, C, D, E, F, таблица соответствия:

    десятичная123456789101112131415
    шестнадцатеричная123456789ABCDEF

    Преобразуем шестнадцатеричное число A5C .

    Пример Перевести число A5C из шестнадцатеричной системы в десятичную.

    A5C 16= 10 * 16 2 + 5 * 16 1 + 12 * 16 0 =2560+80+12=265210

    Перевод чисел в двоичную, шестнадцатеричную, десятичную, восьмеричную системы счисления

    Пример №2 . Представить двоичное число 101.102 в нормализованном виде, записать в 32-битом стандарте IEEE754.

    Способы представления чисел

    Алгоритм перевода чисел из одной системы счисления в другую

    Пример №1 .


    Перевод из 2 в 8 в 16 системы счисления.
    Эти системы кратны двум, следовательно, перевод осуществляется с использованием таблицы соответствия (см. ниже).

    Для перевода числа из двоичной системы счисления в восьмиричную (шестнадцатиричную) необходимо от запятой вправо и влево разбить двоичное число на группы по три (четыре – для шестнадцатиричной) разряда, дополняя при необходимости нулями крайние группы. Каждую группу заменяют соответствующей восьмиричной или шестнадцатиричной цифрой.

    Пример №2 . 1010111010,1011 = 1.010.111.010,101.1 = 1272,548
    здесь 001=1; 010=2; 111=7; 010=2; 101=5; 100=4

    При переводе в шестнадцатеричную систему необходимо делить число на части, по четыре цифры, соблюдая те же правила.
    Пример №3 . 1010111010,1011 = 10.1011.1010,1011 = 2B12,13HEX
    здесь 0010=2; 1011=B; 1010=12; 1011=13

    Перевод чисел из 2 , 8 и 16 в десятичную систему исчисления производят путем разбивания числа на отдельные и умножения его на основание системы (из которой переводится число) возведенное в степень соответствующую его порядковому номеру в переводимом числе. При этом числа нумеруются влево от запятой (первое число имеет номер 0) с возрастанием, а в правую сторону с убыванием (т.е. с отрицательным знаком). Полученные результаты складываются.

    Пример №4 .
    Пример перевода из двоичной в десятичную систему счисления. Пример перевода из восьмеричной в десятичную систему счисления. Пример перевода из шестнадцатеричной в десятичную систему счисления.

    1. Из десятичной системы счисления:
      • разделить число на основание переводимой системы счисления;
      • найти остаток от деления целой части числа;
      • записать все остатки от деления в обратном порядке;
    2. Из двоичной системы счисления
      • Для перевода в десятичную систему счисления необходимо найти сумму произведений основания 2 на соответствующую степень разряда;
      • Для перевода числа в восьмеричную необходимо разбить число на триады.
        Например, 1000110 = 1 000 110 = 1068
      • Для перевода числа из двоичной системы счисления в шестнадцатеричную необходимо разбить число на группы по 4 разряда.
        Например, 1000110 = 100 0110 = 4616

    Таблица для перевода в восьмеричную систему счисления

    Двоичная ССВосьмеричная СС
    000
    0011
    0102
    0113
    1004
    1015
    1106
    1117

    Остаток от деления записываем в обратном порядке. Получаем число в 8-ой системе счисления: 144
    100 = 1448

    Для перевода дробной части числа последовательно умножаем дробную часть на основание 8. В результате каждый раз записываем целую часть произведения.
    0.12*8 = 0.96 (целая часть 0 )
    0.96*8 = 7.68 (целая часть 7 )
    0.68*8 = 5.44 (целая часть 5 )
    0.44*8 = 3.52 (целая часть 3 )
    Получаем число в 8-ой системе счисления: 0753.
    0.12 = 0.7538

    2 Этап. Перевод числа из десятичной системы счисления в восьмеричную систему счисления.
    Обратный перевод из восьмеричной системы счислений в десятичную.

    Для перевода целой части необходимо умножить разряд числа на соответствующую ему степень разряда.
    144 = 8 2 *1 + 8 1 *4 + 8 0 *4 = 64 + 32 + 4 = 100

    Для перевода дробной части необходимо разделить разряд числа на соответствующую ему степень разряда
    0753 = 8 -1 *0 + 8 -2 *7 + 8 -3 *5 + 8 -4 *3 = 0.119873046875 = 0.1199

    144,07538 = 100,119910 ≈ 100,1210
    Разница в 0,0001 (100,12 — 100,1199) объясняется погрешностью округлений при переводе в восьмеричную систему счислений. Эту погрешность можно уменьшить, если взять большее число разрядов (например, не 4, а 8).

    голоса
    Рейтинг статьи
Ссылка на основную публикацию